Image Sensors

- Super important part of the microscope
- Three major properties:
 - Size (Sampling Resolution)
 - Sensitivity
 - Speed

Image Sensors

- Historically, there was film.
- Now, almost everything is digital.
 - CCD
 - CMOS
 - PMTs and other fast, high-efficiency devices
- Also, some new really cool technology with nanowire *etc.* is being developed for extreme sensitivity and temporal resolution on every pixel

Photographic Film

The Basic Structure Of Film

$2AgBr+hv\rightarrow 2Ag+Br2$

Photon energy

Silver grain size

Nik Collection by Google: Silver Efex Pro (free)

Color film

	BEFORE PROCESSING	AFTER PROCESS	SING
Protective layer		<	
Blue sensitive layer-			Yellow dye negative image
Inter layer			
Yellow filter layer — Inter layer —		}	
Green sensitive layer			Magenta dye negative image and residual colored coupler
Inter layer		\rightarrow	
Red sensitive layer			Cyan dye negative image and residual colored coupler
Inter layer			
Anti-halation layer—		{	
Film base ———		{	
Backing layer*		\rightarrow	

Digital Sensors

- Much more sensitive
- View and manipulate digitally

Digital Image

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	84	6	10	33	48	105	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	٥	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

Matrix of gray-level values

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	п	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

Bit depth

- Binary: 0 and 1
- 8 bit: 0 up to (2^8 =) 256
- 16 bit: 0 up to $(16^2 =) 65,536$
- 32 bit: 0 up to $(32^2 =) 4,294,967,296$

8-bit vs. Binary

Digital Color Image

Bayer pattern

We lose light

Dichroic Mirrors, Multiple Cameras

Digital Cameras

Break Time

Recording a Digital Image

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	۰	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

The Pixel

Doped Silicon

Donors, Group V impurities: Phosphorous, Arsenic and Antimony Acceptors, Group III impurities: (e.g. Boron, Gallium and Indium)

Photogate

Holes move

The free electron moves to the left in the electric field. The hole is filled with a bound electron which only jumps between Photon knocks two bound states. Therefore the energy required i small. As out electron. Silicon this process is repeated the hole continues to move towards the right. The moving hole corresponds to a positive charge. θ \ominus E

atom

Energy required to knock it: $\sim 1.2 \text{ eV} \sim 1 \mu \text{m}$ wavelength

- Infrared
- Now commercially available
- Different material lenses (e.g. Gallium Arsenide)

CCD read-out

Interline Transfer CCD

CMOS Imager

CCD vs CMOS

Increase effective fill factor

Microlens These light-collecting microlenses focus the light from the lens onto individual photodiode cells. Color filter Divides light into RGB(red,green and blue) or CMY(cyan, magenta and yellow) color components.

Photodiode

When photodiodes receive light, a photoelectric conversion produces electrical charges (electrons). These electrons are then sent in vertical and horizontal directions, and the amount sent is determined by the intensity of the light received by each pixel. Next, in the CCD's output layer, the accumulated electrons are converted to a voltage, which creates each pixel's image output.

Flow of electrical charge (electrons) varies according to light intensity. Light is converted into an electrical charge.

Each pixel is a single-unit cell.

Other imaging modes (PMTs)

Electronic Light Detectors

https://www.olympus-lifescience.com/de/microscope-resource/ primer/techniques/confocal/detectorsintro/

Digital X-ray

B. Direct AMFPI: X-rays to charge

SPEED

Temporal Sampling

Rolling Shutter/Global Shutter and Artifacts

Stopping Time

Harold Edgerton's Kodatron strobe (1/3,000s)

Flash Strobe

Shadow Photography

http://edgerton-digital-collections.org/techniques/shadow-photography

Spatial Sampling

Sampling density 1 corresponds to "many" sample points per period of the sine wave. Density 2 corresponds to exactly two sample points per period, and density 3 to less than two sample points per period. Let us make simple image reconstructions (linear interpolation) from the sampled values for the three sampling densities:

Recap from last week The Microscope:

Resolution

Abbe Limit of Resolution

$d = \lambda / (2 \times NA)$

Lateral resolution is classically limited by diffraction to ~200nm (determined by Numerical Aperture NA and wavelength)

Example for green light with high NA objective: $d = (550 \text{ nm}) / (2 \times 1.4) \approx 200 \text{ nm}$

Resolution and Magnification

- Example:
 - We have a CCD camera with 512x512 pixels of 16x16 microns size
 - We have a 100x objective with NA = 1.5
 - Resolution: $(0.5)/(2*1.5) \approx 166 \text{ nm}$
 - 100X mag => \approx 16.6 microns in image space
 - => We need to sample at twice this \approx 8 microns
 - => This camera will not work well for us

