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Fresnel and Fraunhofer
Diffraction

e preceding chapter the results of scalar diffraction theory were presented in their most general

forms. Attention is now turned to certain approximations to the general theory, approx-
imations that will allow diffraction pattern calculations to be reduced to comparatively
simple mathematical manipulations. These approximations, which are commonly made in
many fields that deal with wave propagation, will be referred to as Fresnel and Fraunhofer
approximations. In accordance with our view of the wave propagation phenomenon as a
“system,” we shall attempt to find approximations that are valid for a wide class of “input”
field distributions.

Background

In this section we prepare the reader for the calculations to follow. The concept of the
infensity of a wave field is introduced, and the Huygens-Fresnel principle, from which
the approximations are derived, is presented in a form that is especially well suited for
approximation.

The Intensity of a Wave Field

It the optical region of the spectrum, a photodetector responds directly to the optical power
falling on its surface. Thus for a semiconductor detector, if optical power P is incident on
the photosensitive region, absorption of a photon generates an electron in the conduction
barid and a hole in the valence band. Under the influence of internal and applied fields,
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The question now arises as to whether we need to retain all the terms in the approximation
(4-13), or whether only the first term might suffice. The answer to this question depends
on which of the several occurrences of rg; is being approximated. For the ”(%1 appearing in
the denominator of Eq. {(4-9), the error introduced by dropping all terms but z is generally
acceptably small. However, for the ry| appearing in the exponent, errors are much more
critical. First, they are multiplied by a very large number £, a typical value for which might
be greater than 107 in the visible region of the spectrum (e.g., A = 5x 107" meters). Second,
phase changes of as little as a fraction of a radian can change the value of the exponential
significantly. For this reason we retain both terms of the binomial approximaticon in the
exponent. The resulting expression for the field at (x, y) therefore becomes

esz

o k
Ulx,y) = = fo@wkm{ﬁﬁ“xAﬁthmmﬂ}%dm (414)
JAz 2z

where we have incorporated the finite limits of the aperture in the defirition of U (£, n), in
accord with the usual assumed boundary conditions.

Equation (4-14) is readily seen to be a convolution, expressible in the form
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vhich we recognize (aside from multiplicative factors) to be the Fourier transform of the

product of the complex field just to the right of the aperture and a quadratic phase expo-
‘néntial.

‘We refer to both forms of the result, (4-14) and (4-17), as the Fresnel diffraction inte-
I. When this approximation is valid, the observer is said to be in the region of Fresnel
ction, or equivalently in the near field of the aperture.”

R.? atly an interesting relation between the Fresnel diffraction formula and an entity known as the “fractional
transform™ has been found. The interested reader can consult Ref. [242] and the references contained
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Figure 4.4 Magnitude of the integral of the quadratic-phase exponential function.

For the scaled quadratic-phase exponential of Egs. (4-14) and (4-16), the corre-
sponding conclusion is that the majority of the contribution to the convolution integral
comes from a square in the (£, ) plane, with width 4./Az and centered on the point
(6 = x,n = y). This square grows in size as the distance z behind the aperture increases.
In effect, when this square lies entirely within the open portion of the aperture, the field
observed at distance z is, to a good approximation, what it would be if the aperture were
not present. When the square lies entirely behind the obstruction of the aperture, then the
observation point lies in a region that is, to a good approximation, dark due to the shadow
of the aperture. When the square bridges the open and obstructed parts of the aperture, then
the observed field is in the transition region between light and dark. The detailed struc-
ture within these regions may be complex, but the general conclusions above are correct.
Figure 4.5 illustrates the various regions mentioned. For the case of a one-dimensional
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Confocal spherical surfaces.
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U(x, y) can be found from 2 Fourier transform of the product ©
qon U, myand @ quadratic phase function exp [t/ 22)(E% + ). Hin addision f
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Jield),

ikr i
Ulx,y) = olhz ¢l 3+

jiz f f veEm [_ = ‘
/] CxXp| 57 {x& +'yn)} dfdn.  (4-25)

Aside fro :
m multiplicative ph :
the Fourier transform of the? ase facto.rs preceding the integral, thi
aperture distribution, evaluated at fs this expression is simply

’ at frequencies '

fX ZX/A_Z
fr=y/rz

At optical fre i
quencies, the conditi
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) ; s. For exs r validity of the Fr:
width o 2.5 cm (1 1nch example, at a wavelength of 03”6 e Fraunhofer approximation
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(4-26)

z >» 1,600 meters.

An alternati
ative, less strin
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provided r dimension D, the Fraunhofer a esigner’s formula,” states
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20’

Z D —
A

Where the inequality is n
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d . .
e diffraction equation (cf. Prob. 2-10). The
. . secondary wavelets wi
s with

parabolic surfaces (as i
as impli
plied by the Fresnel approximation) no longer shif
r shift laterally in

‘the (x i
, ¥) plane with the parti
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The results of the preceding section can be applied directly to find the complex field
jon pattern of any given aperture. However, of
the intensity intensity

Frauphofer diffract
cussed at the beginnin

th. The final descrip
¢ be distributions of in

s the
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ted, a point we
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nit-amphitude plane wave, (he field distri-
hoter diffraction patierd.

2
fry + U = for IO

+ ’3;:5(;3( + fo

(2wfx) sinc(2wf)s

A5 A 2 A
F \rect (Qw) rect (Zw)\ = A sinc

ia

Figure 411 Amplitude transnlitance function of the sinusoidal applitnde grafing-
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the co :
nvolation th
eorem can b
e used to wri
e

CL2U + sinc Zw(f i

m
+ —si ;
where A signifies th X . fO)]] ,
s e area of th
e cat wow he wition e aperture bounding the grating. The F
. raunhofer diffracti
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» Y F ey
AZ mc .?)

2

_ Finalty, the ¢ Lo
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1ntegsity to be calculated as tif negligible overlap of the ﬂi:::ods within the aperture, then
The intensity is then givenl bye sum of the squared magnitu dZSS:fiCthf;ItEtions, allowing the

ree terms in (4-35).

2
I(x,y)%[i ) 2w
2z (TZ) {Sim:2 (%“jf)
z i

+ Tisincz 2w i
SO P
4 Pae ‘folz)”. (4-36)

+ Tsine [2“”( m
P -+ fokz)} + —sinc w
23 fw)]} . (435)

4

This intensi
: sity pattern is i .
is absorbed by the grating aﬁiiuﬁtrated in Fig. 4.12. Note that
) in addition the sinusoidal Han:;r.ite of the incident Tight
ittance variation
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